中国纺织服装检测论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

元茂测试仪器西安研硕仪器◆玛莎百货M&S标准免费下载◆加拿大CAN标准免费下载
您的位置cnfzjc#126.com◆澳大利亚AS标准免费下载◆JC.PENNEY全套测试方法▲耐日晒色牢度试验专区
查看: 4406|回复: 9

数据处理的常用概念

[复制链接]

该用户从未签到

发表于 2009-5-20 22:54:00 | 显示全部楼层 |阅读模式
1、标准偏差(SD 、Standard Deviation)
9 m6 m! `* v4 t' C2 u# y1 u     一种量度数据分布的分散程度的标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。, R4 [# ~3 X6 a# W6 X, s* y
标准偏差公式:S = Sqr[∑(xn-x平均)^2 /(n-1)]; I/ D) k( W8 O5 ?1 f9 h
Sqr……开平方,^……平方& w$ S- z. m3 d5 N
' c! x+ y; ^' V! N
2、相对标准偏差(RSD、Relative Standard Deviation): A# E) m! K5 k
    相对标准偏差就是指:标准偏差与测量结果算术平均值的比值,用公式表示如下
$ a: \2 e, G8 ~% A! m! wRSD=SD/X,其中S为标准偏差,X为测量平均值
* X0 c) T, }8 |1 [$ d' G. F0 u) S% K. C# v. f5 n8 A
3、加标回收率- x$ i' J. ]6 Z7 ~: s, A
加标回收实验是化学分析中常用的实验方法,也是重要的质控手段,回收率是判定分析结果准确度的量化指标。加标实验及回收率的计算并不复杂,加标方式可根据不同项目、不同分析方法和不同的需要灵活掌握,回收率的计算也各不相同,因此文献[1 ]只给出回收率(记作R) 计算的定义公式:
4 N8 H, s# y+ a! J3 \9 l/ LR = 加标试样测定值 - 试样测定值/加标量×100 %分析化学论坛#p8U4G8~.p7],y9v*A/o
6 |$ E# C5 D2 ]6 z" [文献[2~4 ]报道了用实验中间结果直接计算回收率的方法,一定条件下可简化计算,但有其局限性。工作中发现,由于操作人员对回收实验认识模糊,在进行加标实验时盲目性大,容易引入误差,使实验复杂化,造成回收率误算甚至导致实验失败。因此,科学合理地组织加标实验,对保证实验的质量,提高工作效率具有一定的实际意义。但这方面未见详细报道。9 y; z) x- G1 t

" C9 P' |# h: m0 w+ k% `& N* D1  加标实验的一般原则76 s5 w+ M2 l0 Z( q! f, R  Q
(1) 一致原则:样品与加标样同时按同一操作步骤和方法测定,保证实验条件一致。为提高准确度,样品和加标样可分别进行平行测试。
' a5 ?* ]- f0 O0 w. T% a  ?(2) 可比原则:加标样中原始样品的取样体积、稀释倍数及测试体积,尽可能与样品测试时一致。分析化学论坛,S$L2r._0A#a"B
6 C: x- _; x# B& A' B9 _- H0 D8 x(3) 相近原则:加标量应与样品中相应待测物含量相近,一般为试样含量的0.5~2倍,加标后的总量不超过测定上限,如含量小于检出下限时,可按检出限量加标。
2 F! }3 S; t. k2 W6 y# M" O7 T" W(4) 不变原则:加标物的浓度宜高,加标体积宜小,一般不超过原始试样体积的1% ,保持样品的基体不变。|分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流(Z4K0?6f4x1x.`,E(C2 ?1 L, D; k1 K0 ^
(5) 适用原则:容易实施,便于回收率计算。
. R' O$ t& p- I4 k1 |+ C
, g4 _, f- z5 d& `2  加标实验的基本思路% }% d- v0 e0 E" @0 p% y% `
2. 1  加标方式0 a2 c8 o5 z3 h# l. \+ o
虽然加标方式各异,但都可以归结为如下形式。K.K
( q8 b5 T* I4 }: U0 F0 F* C4 Y9 k样品分析:样品体积为V , 被测成分质量浓度为C1 , 测试体积为V测(1) ;加标实验:加标后样品总体积为V2 ,质量浓度为C2 ,测试体积为V测(2) ,加标样中含原始样品体积为V1 ;www.k(X$ i1 q+ A5 [4 ?, v% q3 V, U
加标量:加标体积为Vs ,质量浓度为Cs 。
8 g: z. w$ _3 P显然,V2 ≥V1 + Vs ,取“ = ”时,是在V1 样品中加入Vs 标液形成加标样;取“ > ”时,是在V1 样品中加入Vs 标液后稀释到V2 形成加标样。一般地使V1 = V , V2 = V1 + Vs ,即取相同体积的2份样品,其中1份加标,1份不加标,这是最常用的加标方式。M9 }3 |! d, {4 e) G4 I

! F0 f7 O& ]9 K' P
2. 2  回收率计算2 ^( h  L1 Y% K3 a1 X; C( i7 ?
根据假设和回收率定义,可得:www.;]3J" c/ h2 J" v- c2 T8 k( b8 j# A
R =V2?C2 - V1?C1/Vs?Cs×100 % …………(1)|分- k( U1 d  p2 V9 q  T# i
式(1) 是以被测物质的含量变化求取回收率的, 简单明了,易于理解,适用于任何方式的加标实验,因此可作为回收率计算的通式。式(1) 可变形为:"x#h0i2u'T
0 i3 n& N5 s: F. {! s/ p+ {& KR =(C2 - V1 C1/ V2)/Vs?Cs / V2×100 %………… (2)分R
5 {8 n8 y& ]: q9 U& c式(2) 是以质量浓度的变化量来求取回收率的, 必须注意浓度之间的换算关系, V1?C1/ V2 , Vs?Cs/ V2 分别代表了样品、标样在加标样中的浓度。'g6\%v+T5~)C-n0o
3 C1 q/ e% K- v4 k" z* C2 R* x( N3 H4 V# w" }
2. 3  讨论
; b( P8 ]- h' U5 D& D(1) V1 = 0 ,即零空白加标。取Vs 标样稀释至V2 或直接取Vs 标样作为加标样(此时V2 = Vs ) ,对标准物质进行量值追踪,可用于干扰实验、方法的可行性研究、系统误差检验、实验过程的损失率、吸收效率的验证等。那么:www.a7?*~. f4 |5 I/ J, k9 X
R =V2?C2/Vs?Cs×100 %      或R =C2/Cs×100 %www
' J3 k  v# _1 C* X7 t(2) V2 = V1 + Vs 且V1≈ V2 。当Vs 很小, 不超过V1 的1 %时,可忽略样品体积的变化,认为V1 = V2 ,式(1) 变为:
# `0 U  M8 P, O8 |8 m& y     R =V1?( C2 - C1)/Vs?Cs×100 %
! W4 e0 G1 I0 e4 ]% L2 C# L$ N2 g这种方式比较直观,没有体积换算的麻烦,适用于所需样品量较大的项目和组分复杂的污染源样品,不会引起基体的太大变化。但为了达到加标量控制在样品0.5~2倍的目的,往往需要Cs 较大, 而Vs 较小, 对样品需量不大的项目,这种操作方式难以实施,还可能在加标时引起较大误差。解决的一种办法是,同比例增加试样、标样的体积,混匀后取部分体积进行分析。% @/ h  L1 m6 X+ u+ E
(3) V1 、Vs 不受严格约束。V1 、Vs 可大可小, Vs/ V1 可达10 %左右。那么Cs 可以较小, Vs 可以较大,减少误差,这种方式比较随意,容易实施,适用于组分简单的环境样品和绝大多数的实验项目。式(1) 也很好地反映出这种加标方式的随意性。|分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流.v8C1s;z(T- j0 N( }/ h7 S
(4) 样品稀释比、加标量的确定是关键,要确保测定结果落在测试范围内。高浓度样品可先按不同稀释比稀释,再配对加标。同一样品也可进行一系列不同加标量的回收实验,保证实验1次成功。, }  ~' N- h" B( E" n
# h' f5 d" C5 Z1 v6 Z
2. 4  实施方法
1 u4 [& N( c0 l0 C对常规样品可凭经验实施,对于未知样品一般步骤为:①了解样品来源,初步估计待测物质含量; ②确定稀释比和测试体积; ③根据样品性质、分析方法选择加标方式; ④确定加标量。
7 ?3 m, S* f* Q2 X6 p4 C* _* w$ Z' b% ]3 g: r$ a
3 用中间值计算回收率
- s8 Z5 ~& A" _4 \中间值是指未计算成样品浓度的试验值,如分光光度法的吸光度A ,容量分析法中的滴定体积数V (mL) ,电极法中的电位值E(mV) 等。用样品及加标样的试验值直接进行计算,在特定条件下能简化计算过程,快速准确,但要注意中间值的可比性,因为中间值往往与许多参数有关,如样品稀释比、测试体积V测等,忽视这些因素就容易造成误算。; C) B# \  `) M9 K9 G% I

2 V/ a9 v! `7 d& D. G
3. 1  用吸光度A 计算
& B; z) C' \. K设样品吸光度为A1 ,测试体积为V测(1) ;加标样吸光度为A2 ,测试体积为V测(2) ,其他假设同前。在分光光度法中,吸光度通常与待测物质的含量(μg) 建立回归方程为:A = a + b?W& y' [3 z1 ]1 a* l: D3 O- f$ ?
样品质量浓度C = W/ V测, 根据回收率定义, 很容易推导出:( p3 `+ q8 U  V/ X1 I/ k4 a
R = [ V2?(A2 - a/A1 – a)×(V测(1)/V测(2))- V1]×(A1 – a/b?V测(1))×(1/Cs?Vs)×100 %………… (3)
$ x  d; c5 s4 p7 k2 I; g可以看出,式(3) 引入了与A 值有关的参数, 使公式变得繁杂,相当于把计算浓度的过程放在回收率计算中去完成,计算并没有简化。式(3) 适用于任何一种加标方式,可作为用吸光度A 计算回收率的通式。
5 c% r8 i9 m- j3 D& ]5 e当V1 = V测(1) 且V2 = V测(2) 时, 计算最为方便, 式(3) 化简为:* U( ?( U* e0 a: d/ H9 h8 x3 _- J
R =(A2 - A1)/b×1/Cs?Vs×100 % ………………(4)www.n8I
# m+ K, Q( S) a/ e例如文献[2 ]中例3 ,用光度法测某水样的总磷含量,其V1 = V测(1) = 25. 0 mL , V2 = V测(2) = 26. 0 mL ,Vs = 1. 0 mL , Cs= 2. 0μg/ mL ,校准曲线A = 0. 002 + 0. 020 W,测得A1 = 0.056 , A2 = 0. 095。用式(4) 计算得R = 97. 5 % ,计算比较简单,结果一致。
+ V/ I6 a2 }5 ^值得注意的是,某些光度法中, C = K?W/ V测, K 为一系数,如异烟酸吡唑啉酮光度法测氰化物,因此其对应的式(3) 、式(4) 必须做相应的变化。! Y8 J; l/ l0 u7 i* H

% B; x" V' C$ n+ r  @! j: |5 S
3. 2  用滴定的体积V (mL) 计算
' k  S7 [/ Q0 X! I容量分析法是用已知浓度的标准物质滴定待测组分,根据消耗的体积数来定量。设样品消耗的标准物质体积为V样,加标样消耗的体积为V加,空白消耗的体积为V空,其余假设同前。样品质量浓度常用下式计算:0w.Y
( m* G  R5 B+ v% C# k9 Y0 x9 x3 N& [C = ( V - V空) ?C0?K/ V测3 ^) ]: u; J" ?( Z5 |" O/ t
式中: K 为与测定项目有关的常数, C0 为标准物质的质量浓度,可以推导出:分析化学,论坛,化学分析,仪器分析,分析测试,色谱,电泳,光谱'N3Y8D'~5[,J;V!|3]$ M" g  G& _  c, B# z2 B- o
 R = [V2?(V加- V空/V样- V空)×(V测(1)/V测(2))- V1)]×{[( V样- V空) ?K?C0/w33ge.com3u#@ T2z,R+ R5 V7 t4 U* p! w; g
V测(1)]×(1/Cs?Vs)}×100%………… (5)3 r6 ]/ T& n; Y: \1 f5 e$ r
式(5) 与式(3) 形式相近,可作为容量法用滴定体积数求取回收率的通式。也只有当V1 = V测(1) 且V2 = V测(2) 时, 计算最为简便:
  Z% J0 B, ?, fR =[( V加- V样) ?K?C0/Cs?Vs]×100 %
! q3 T$ B# t/ w同样,对某些容量分析法,其浓度计算公式可能有些差异,那么式(5) 也应做相应的变化。|分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流 [#V;N/|5i2b!Y
3 e1 w8 e5 w; j9 c3. 3  讨论
! L( Y* h0 Z! M6 a5 A6 F用中间值计算回收率理论上是可行的,但有局限性。监测项目不同,公式就不相同,针对性强,不便于推广,而且只有当V1 = V测(1) 且V2 = V测(2) 时计算方可简化。其他方式下,参数多计算复杂,容易出错。当样品的浓度值低于方法检出限时,用中间值直接计算回收率更为合理些。无论用中间值还是用通式计算回收率,其结果应是相同的。0 ]! u2 L& D+ s
例:用纳氏试剂光度法测定某水样中氨氮,分别取100 mL水样2 份,于其中1 份加入Cs = 30. 0μg/ mL ,Vs = 5. 0 mL 的铵标准溶液,经絮凝沉淀预处理后,各取10. 0 mL 样品用校准曲分析化学,论坛,化学分析,仪器分析,分析测试,色谱,电泳,光谱-};c-?4V.G9F!r
( z% a$ k# H+ M" \. N8 u: ]( D4 n线步骤测量,测得水样吸光度A1 = 0. 105 ,加标水样吸光度A2= 0. 206 ,校准曲线回归方程A = 0. 000 5 + 0. 007 5 W。这里,V1 = 100 mL ,V2 = 105 mL ,V测(1) = V测(2) = 10. 0 mL。经计算知C1 = 1. 393 mg/ L , C2 = 2. 740 mg/ L。按式(3) 计算回收率为98. 91 %,与式(1) 计算结果相同。文献[2]中因推导有纰漏,所以结果相差较大。

2 Y6 u0 o; T3 K# j& d5 i- I, d4  结论" k% T0 m3 a' k& h6 C
规范地实施加标回收实验,可以保证实验质量,提高工作效率。样品分析最终结果多以质量浓度表示,因而用通式计算回收率具有普遍性。用中间值计算回收率理论上是可行的,但引入各种参数,必须注意中间值的可比性,在特定方式下,回收率计算可大大简化,实验时可优先选择。
, B1 U1 T9 v7 |9 N7 E6 b+ e4 W+ E! \' L( N# T, W$ H
参考文献分析化学,论坛,化学分析,仪器分析,分析测试,色谱,电泳,光谱8I9o2O:F6g8j!J
1 v" z" u8 `  Y7 a# ]) `1  国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法(第3 版) . 北京:中国环境科学出版社,1989
; z+ e& Z8 Y7 s黄彩海,李合义,王彩金. 分光光度分析加标回收率直接计算的数学模型研究. 中国环境监测,1999 ,15(1) :46~48分析化学论坛$l0J*s)b,E"D2 O3 _& w0 \. Z3 U) h! M
3  宋文波. 紫外分光光度法测定矿物油加标回收率计算方法的改进. 中国环境监测,1996 ,12(5)
; I( y) j7 {5 R  h" |分析化学,论坛,化学分析,仪器分析,分析测试,色谱,电泳,光谱4  张吉荣,王培花. CODcr加标回收率简便计算法. 中国环境监测,1997 ,13 (6)

该用户从未签到

发表于 2009-5-30 16:21:00 | 显示全部楼层

新手报到

好好学习,纺织检测知识真丰富

该用户从未签到

发表于 2009-6-2 19:49:00 | 显示全部楼层

回复 1# cntest 的帖子

很有参考价值!谢谢!

该用户从未签到

发表于 2009-6-16 11:45:00 | 显示全部楼层
受益匪浅!感谢!

该用户从未签到

发表于 2009-8-10 23:14:00 | 显示全部楼层
字体好大~~~学习了

该用户从未签到

发表于 2009-9-22 18:08:00 | 显示全部楼层
第一次知道吸光度

该用户从未签到

发表于 2011-8-29 00:08:00 | 显示全部楼层
学习,谢谢。
  • TA的每日心情
    奋斗
    2018-11-19 15:49
  • 签到天数: 53 天

    [LV.5]常住居民I

    发表于 2017-4-24 14:05:12 | 显示全部楼层

    3 s& X9 N5 x0 Z! ?, e谢谢楼主分享
  • TA的每日心情
    开心
    2019-12-30 08:15
  • 签到天数: 151 天

    [LV.7]常住居民III

    发表于 2019-8-12 08:28:00 | 显示全部楼层
    谢谢楼主的分享
  • TA的每日心情
    开心
    1 小时前
  • 签到天数: 622 天

    [LV.9]以坛为家II

    发表于 2024-2-11 10:08:17 | 显示全部楼层
    非常有用的资料,好评~
    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    Archiver|手机版|小黑屋|中国纺织服装检测论坛 ( 苏ICP备17035522号-2 )

    GMT+8, 2025-11-15 08:45 , Processed in 0.077795 second(s), 21 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表